Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446318

RESUMO

Lesions in the human anterior cruciate ligament (ACL) are frequent, unsolved clinical issues due to the limited self-healing ability of the ACL and lack of treatments supporting full, durable ACL repair. Gene therapy guided through the use of biomaterials may steadily activate the processes of repair in sites of ACL injury. The goal of the present study was to test the hypothesis that functionalized poly(sodium styrene sulfonate)-grafted poly(ε-caprolactone) (pNaSS-grafted PCL) films can effectively deliver recombinant adeno-associated virus (rAAV) vectors as a means of overexpressing two reparative factors (transforming growth factor beta-TGF-ß and basic fibroblast growth factor-FGF-2) in primary human ACL fibroblasts. Effective, durable rAAV reporter red fluorescent protein and candidate TGF-ß and FGF-2 gene overexpression was achieved in the cells for at least 21 days, especially when pNaSS-grafted PCL films were used versus control conditions, such as ungrafted films and systems lacking vectors or films (between 1.8- and 5.2-fold differences), showing interactive regulation of growth factor production. The expression of TGF-ß and FGF-2 from rAAV via PCL films safely enhanced extracellular matrix depositions of type-I/-III collagen, proteoglycans/decorin, and tenascin-C (between 1.4- and 4.5-fold differences) in the cells over time with increased levels of expression of the specific transcription factors Mohawk and scleraxis (between 1.7- and 3.7-fold differences) and without the activation of the inflammatory mediators IL-1ß and TNF-α, most particularly with pNaSS-grafted PCL films relative to the controls. This work shows the value of combining rAAV gene therapy with functionalized PCL films to enhance ACL repair.


Assuntos
Dependovirus , Fator de Crescimento Transformador beta , Humanos , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Ligamento Cruzado Anterior , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fibroblastos/metabolismo
2.
Int J Mol Sci ; 23(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36430947

RESUMO

The anterior cruciate ligament (ACL), the principal ligament for stabilization of the knee, is highly predisposed to injury in the human population. As a result of its poor intrinsic healing capacities, surgical intervention is generally necessary to repair ACL lesions, yet the outcomes are never fully satisfactory in terms of long-lasting, complete, and safe repair. Gene therapy, based on the transfer of therapeutic genetic sequences via a gene vector, is a potent tool to durably and adeptly enhance the processes of ACL repair and has been reported for its workability in various experimental models relevant to ACL injuries in vitro, in situ, and in vivo. As critical hurdles to the effective and safe translation of gene therapy for clinical applications still remain, including physiological barriers and host immune responses, biomaterial-guided gene therapy inspired by drug delivery systems has been further developed to protect and improve the classical procedures of gene transfer in the future treatment of ACL injuries in patients, as critically presented here.


Assuntos
Lesões do Ligamento Cruzado Anterior , Humanos , Lesões do Ligamento Cruzado Anterior/genética , Lesões do Ligamento Cruzado Anterior/terapia , Ligamento Cruzado Anterior/cirurgia , Articulação do Joelho
4.
Nanotechnology ; 33(20)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35105825

RESUMO

Polyethylene terephthalate (PET) is widely used to elaborate biomaterials and medical devices in particular for long-term implant applications but tuning their surface properties remains challenging. We investigate surface functionalization by grafting poly(sodium 4-styrene sulfonate, PNaSS) with the aim of enhancing protein adhesion and cellular activity. Elucidating the topography and molecular level organization of the modified surfaces is important for understanding and predicting biological activity. In this work, we explore several grafting methods including thermal grafting, thermal grafting in the presence of Mohr's salt, and UV activation. We characterize the different surfaces obtained using atomic force microscopy (AFM), contact angle (CA), and x-ray photoelectron spectroscopy (XPS). We observe an increase in the percentage of sulfur atoms (XPS) that correlates with changes in (CA), and we identify by AFM characteristic features, which we interpret as patches of polymers on the PET surfaces. This work demonstrates tuning of biomaterials surface by functionalization and illustrates the capability of AFM to provide insights into the spatial organization of the grafted polymer.


Assuntos
Microscopia de Força Atômica , Polietilenotereftalatos/química , Polímeros/química , Ácidos Sulfônicos/química , Materiais Biocompatíveis/química , Espectroscopia Fotoeletrônica , Polimerização , Propriedades de Superfície
5.
J Orthop Surg Res ; 17(1): 7, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34986843

RESUMO

BACKGROUND: Anterior cruciate ligament (ACL) repair techniques are new emerging strategies prevailing, in selected cases, over standard reconstruction of the ACL with excision of its remnants. Mid-substance ACL tears represent a challenge for ACL repair techniques, and remnants-preserving ACL reconstruction (rp-ACLR) using an autograft remains the recommended treatment in this situation. However, morbidity associated with the autograft harvesting prompts the need for alternative surgical strategies based on the use of synthetic scaffolds. Relevant small animal models of mid-substance tears with ACL remnants preservation and reconstruction are necessary to establish the preliminary proof of concept of these new strategies. METHODS: A rat model of rp-ACLR using a tendinous autograft after complete mid-substance ACL transection was established. Twelve weeks following surgery, clinical outcomes and knee joints were assessed through visual gait analysis, Lachman tests, thigh perimeter measurements, magnetic resonance imaging, micro-computed tomography, and histology, to evaluate the morbidity of the procedure, accuracy of bone tunnel positioning, ACL remnants fate, osteoarthritis, and autograft bony integration. Results were compared with those obtained with isolated ACL transection without reconstruction and to right non-operated knees. RESULTS AND DISCUSSION: Most operated animals were weight-bearing the day following surgery, and no adverse inflammatory reaction has been observed for the whole duration of the study. Autograft fixation with cortical screws provided effective graft anchorage until sacrifice. Healing of the transected ACL was not observed in the animals in which no graft reconstruction was performed. rp-ACLR was associated with a reduced degeneration of the ACL remnants (p = 0.004) and cartilages (p = 0.0437). Joint effusion and synovitis were significantly lower in the reconstructed group compared to the transected ACL group (p = 0.004). Most of the bone tunnel apertures were anatomically positioned in the coronal and/or sagittal plane. The most deviated bone tunnel apertures were the tibial ones, located in median less than 1 mm posteriorly to anatomical ACL footprint center. CONCLUSION: This study presents a cost-effective, new relevant and objective rat model associated with low morbidity for the preliminary study of bio-implantable materials designed for remnants-preserving ACL surgery after mid-substance ACL tear.


Assuntos
Lesões do Ligamento Cruzado Anterior/cirurgia , Reconstrução do Ligamento Cruzado Anterior/métodos , Ligamento Cruzado Anterior/cirurgia , Animais , Ligamento Cruzado Anterior/diagnóstico por imagem , Lesões do Ligamento Cruzado Anterior/diagnóstico por imagem , Autoenxertos , Articulação do Joelho/cirurgia , Imageamento por Ressonância Magnética , Modelos Animais , Ratos , Tíbia/cirurgia , Transplante Autólogo , Microtomografia por Raio-X
6.
Biointerphases ; 16(5): 051003, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34634913

RESUMO

Cell adhesion and growth over prostheses are strongly influenced by the adsorption and conformation of adhesive proteins from blood and extracellular matrix, such as fibronectin. This key behavior can be possibly exploited to develop a prosthetic ligament based on the surface bioactivation of biodegradable materials. In this work, surface functionalization was performed by grafting poly(sodium 4-styrene sulfonate) on polyethylene terephthalate and polycaprolactone using a thermal surface-initiated atom transfer radical polymerization grafting technique. The morphology and mechanical properties of the adsorbed fibronectin in the presence of albumin were studied by atomic force microscopy. The morphology of fibronectin on two kinds of polyester surfaces was similar. However, the study results showed a remarkable conformation change of fibronectin when adsorbed onto the nongrafted or grafted surface, leading to an increase in cell adhesion and organization in the second case. This research provided evidence of the relationship between the morphology change of fibronectin to the enhancement of the cell adhesion and spreading on the grafted surface of polyester.


Assuntos
Fibronectinas , Poliésteres , Adsorção , Adesão Celular , Microscopia de Força Atômica , Poliestirenos , Propriedades de Superfície
7.
Biomedicines ; 9(7)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34356888

RESUMO

A challenge in contractile restoration of myocardial scars is one of the principal aims in cardiovascular surgery. Recently, a new potent biological tool used within healing processes is represented by exosomes derived from mesenchymal stem cells (MSCs). These cells are the well-known extracellular nanovesicles released from cells to facilitate cell function and communication. In this work, a combination of elastomeric membranes and exosomes was obtained and tested as a bioimplant. Mesenchymal stem cells (MSCs) and macrophages were seeded into the scaffold (polycaprolactone) and filled with exosomes derived from MSCs. Cells were tested for proliferation with an MTT test, and for wound healing properties and macrophage polarization by gene expression. Moreover, morphological analyses of their ability to colonize the scaffolds surfaces have been further evaluated. Results confirm that exosomes were easily entrapped onto the surface of the elastomeric scaffolds, increasing the wound healing properties and collagen type I and vitronectin of the MSC, and improving the M2 phenotype of the macrophages, mainly thanks to the increase in miRNA124 and decrease in miRNA 125. We can conclude that the enrichment of elastomeric scaffolds functionalized with exosomes is as an effective strategy to improve myocardial regeneration.

8.
Sci Rep ; 11(1): 4258, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608601

RESUMO

Polyethylene terephthalate (PET) fibers and fabrics are widely used for medical device applications such as vascular and anterior cruciate ligament prostheses. Several years ago, we began functionalizing PET fabrics using anionic polymers to enhance their biocompatibility, cell adhesion, proliferation and functional performance as PET ligament prostheses. Polymer functionalization followed a grafting-from process from virgin PET surfaces subject to spin-finish oil additive removal under Soxhlet extraction to remove residual fiber manufacturing oil. Nevertheless, with increasing time from manufacture, PET fabrics stored without a spin finish removal step exhibited degradation of spin finish oil, leading to (1) incomplete surface cleaning, and (2) PET surface degradation. Moreover, oxidizing agents present in the residual degraded oil prevented reliable functionalization of the prosthesis fibers in these PET fabrics. This study compares effects of PET fabric/spin finish oil storage on PET fabric anionic polymer functionalization across two PET fabric ligament storage groups: (1) 2- and 10- year old ligaments, and (2) 26-year old ligaments. Strong interactions between degraded spin finish oil and PET fiber surfaces after long storage times were demonstrated via extraction yield; oil chemistry changed assessed by spectral analysis. Polymer grafting/functionalization efficiency on stored PET fabrics was correlated using atomic force microscopy, including fiber surface roughness and relationships between grafting degree and surface Young's modulus. New PET fabric Young's modulus significantly decreased by anionic polymer functionalization (to 96%, grafting degree 1.6 µmol/g) and to reduced modulus and efficiency (29%) for 10 years storage fabric (grafting degree ~ 1 µmol/g). As fiber spin finish is mandatory in biomedically applicable fiber fabrication, assessing effects of spin finish oil on commercial polymer fabrics after longer storage under various conditions (UV light, temperature) is necessary to understand possible impacts on fiber degradation and surface functionalization.

9.
Hum Gene Ther ; 32(17-18): 895-906, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33573471

RESUMO

Scaffold-guided viral gene therapy is a novel, powerful tool to enhance the processes of tissue repair in articular cartilage lesions by the delivery and overexpression of therapeutic genes in a noninvasive, controlled release manner based on a procedure that may protect the gene vehicles from undesirable host immune responses. In this study, we examined the potential of transferring a recombinant adeno-associated virus (rAAV) vector carrying a sequence for the highly chondroregenerative transforming growth factor beta (TGF-ß), using poly(ɛ-caprolactone) (PCL) films functionalized by the grafting of poly(sodium styrene sulfonate) (pNaSS) in chondrogenically competent bone marrow aspirates as future targets for therapy in cartilage lesions. Effective overexpression of TGF-ß in the aspirates by rAAV was achieved upon delivery using pNaSS-grafted and ungrafted PCL films for up to 21 days (the longest time point evaluated), with superior levels using the grafted films, compared with respective conditions without vector coating. The production of rAAV-mediated TGF-ß by pNaSS-grafted and ungrafted PCL films significantly triggered the biological activities and chondrogenic processes in the samples (proteoglycan and type-II collagen deposition and cell proliferation), while containing premature mineralization and hypertrophy relative to the other conditions, with overall superior effects supported by the pNaSS-grafted films. These observations demonstrate the potential of PCL film-assisted rAAV TGF-ß gene transfer as a convenient, off-the-shelf technique to enhance the reparative potential of the bone marrow in patients in future approaches for improved cartilage repair.


Assuntos
Medula Óssea , Fator de Crescimento Transformador beta , Diferenciação Celular , Condrogênese , Terapia Genética , Vetores Genéticos/genética , Humanos , Fator de Crescimento Transformador beta/genética
10.
Acta Biomater ; 121: 68-88, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33212233

RESUMO

Silicone implants are widely used in the medical field for plastic or reconstructive surgeries for the purpose of soft tissue issues. However, as with any implanted object, healthcare-associated infections are not completely avoidable. The material suffers from a lack of biocompatibility and is often subject to bacterial/microbial infections characterized by biofilm growth. Numerous strategies have been developed to either prevent, reduce, or fight bacterial adhesion by providing an antibacterial property. The present review summarizes the diverse approaches to deal with bacterial infections on silicone surfaces along with the different methods to activate/oxidize the surface before any surface modifications. It includes antibacterial coatings with antibiotics or nanoparticles, covalent attachment of active bacterial molecules like peptides or polymers. Regarding silicone surfaces, the activation step is essential to render the surface reactive for any further modifications using energy sources (plasma, UV, ozone) or chemicals (acid solutions, sol-gel strategies, chemical vapor deposition). Meanwhile, corresponding work on breast silicone prosthesis is discussed. The latter is currently in the line of sight for causing severe capsular contractures. Specifically, to that end, besides chemical modifications, the antibacterial effect can also be achieved by physical surface modifications by adjusting the surface roughness and topography for instance.


Assuntos
Anti-Infecciosos , Implantes de Mama , Antibacterianos/farmacologia , Biofilmes , Materiais Revestidos Biocompatíveis/farmacologia , Silicones , Propriedades de Superfície
11.
Biointerphases ; 15(6): 061006, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203213

RESUMO

Polycaprolactone (PCL) is a widely used biodegradable polyester for tissue engineering applications when long-term degradation is preferred. In this article, we focused on the analysis of the hydrolytic degradation of virgin and bioactive poly(sodium styrene sulfonate) (pNaSS) functionalized PCL surfaces under simulated physiological conditions (phosphate buffer saline at 25 and 37 °C) for up to 120 weeks with the aim of applying bioactive PCL for ligament tissue engineering. Techniques used to characterize the bulk and surface degradation indicated that PCL was hydrolyzed by a bulk degradation mode with an accelerated degradation-three times increased rate constant-for pNaSS grafted PCL at 37 °C when compared to virgin PCL at 25 °C. The observed degradation mechanism is due to the pNaSS grafting process (oxidation and radical polymerization), which accelerated the degradation until 48 weeks, when a steady state is reached. The PCL surface was altered by pNaSS grafting, introducing hydrophilic sulfonate groups that increase the swelling and smoothing of the surface, which facilitated the degradation. After 48 weeks, pNaSS was largely removed from the surface, and the degradation of virgin and pNaSS grafted surfaces was similar. The cell response of primary fibroblast cells from sheep ligament was consistent with the surface analysis results: a better initial spreading of cells on pNaSS surfaces when compared to virgin surfaces and a tendency to become similar with degradation time. It is worthy to note that during the extended degradation process the surfaces were able to continue inducing better cell spreading and preserve their cell phenotype as shown by collagen gene expressions.


Assuntos
Poliésteres/química , Polímeros/metabolismo , Ácidos Sulfônicos/química , Animais , Soluções Tampão , Adesão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colágeno/genética , Colágeno/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Hidrólise , Polímeros/química , Polímeros/farmacologia , Ovinos , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Engenharia Tecidual
12.
Pharmaceutics ; 12(3)2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32245159

RESUMO

BACKGROUND: The delivery of therapeutic genes in sites of articular cartilage lesions using non-invasive, scaffold-guided gene therapy procedures is a promising approach to stimulate cartilage repair while protecting the cargos from detrimental immune responses, particularly when targeting chondroreparative bone marrow-derived mesenchymal stromal cells in a natural microenvironment like marrow aspirates. METHODS: Here, we evaluated the benefits of providing a sequence for the cartilage-specific sex-determining region Y-type high-mobility group box 9 (SOX9) transcription factor to human marrow aspirates via recombinant adeno-associated virus (rAAV) vectors delivered by poly(ε-caprolactone) (PCL) films functionalized via grafting with poly(sodium styrene sulfonate) (pNaSS) to enhance the marrow chondrogenic potential over time. RESULTS: Effective sox9 overexpression was observed in aspirates treated with pNaSS-grafted or ungrafted PCL films coated with the candidate rAAV-FLAG-hsox9 (FLAG-tagged rAAV vector carrying a human sox9 gene sequence) vector for at least 21 days relative to other conditions (pNaSS-grafted and ungrafted PCL films without vector coating). Overexpression of sox9 via rAAV sox9/pNaSS-grafted or ungrafted PCL films led to increased biological and chondrogenic differentiation activities (matrix deposition) in the aspirates while containing premature osteogenesis and hypertrophy without impacting cell proliferation, with more potent effects noted when using pNaSS-grafted films. CONCLUSIONS: These findings show the benefits of targeting patients' bone marrow via PCL film-guided therapeutic rAAV (sox9) delivery as an off-the-shelf system for future strategies to enhance cartilage repair in translational applications.

13.
ACS Omega ; 5(14): 8137-8145, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32309723

RESUMO

This study highlights recent advances in the synthesis of nanoconjugates based on gold (Au(III)) complex with a bioactive polymer bearing sulfonate groups called thiol-poly(sodium styrene sulfonate) (PolyNaSS-SH) with various molecular weights (5, 10, and 35 kDa). The three nanomaterials differ substantially in shape and structure. In particular, for PolyNaSS-SH of 35 kDa, we obtained a characteristic core-shell flower shape after chelation of the Au(III) ions and successively reduction with sodium borohydride (NaBH4). The mechanism of formation of the hybrid nanoparticles (PolyNaSS-SH@AuNPs (35 kDa) and their interactions between plasmatic proteins (human serum albumin (HSA), collagen I (Col 1), and fibronectin (Fn)) were deeply studied from a chemical and physical point of view by using several analytical techniques such as Raman spectroscopy, UV-visible, transmission electron microscopy (TEM), 1H NMR, and X-ray photoelectron spectroscopy (XPS).

14.
Tissue Eng Part A ; 26(7-8): 450-459, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31680637

RESUMO

Scaffold-guided gene transfer offers strong systems to develop noninvasive convenient therapeutic options for the treatment of articular cartilage defects, especially when targeting bone marrow aspirates from patients containing chondroregenerative mesenchymal stromal cells in a native microenvironment. In this study, we examined the feasibility of delivering reporter (red fluorescent protein [RFP], lacZ) recombinant adeno-associated virus (rAAV) vectors over time to such samples through biocompatible mechanically stable poly(ɛ-caprolactone) (PCL) films grafted with poly(sodium styrene sulfonate) (pNaSS) for improved biological responses as clinically adapted tools for cartilage repair. Effective transgene expression (RFP, lacZ) was noted over time in human bone marrow aspirates using pNaSS-grafted films (up to 90% efficiency for at least 21 days) versus control conditions (ungrafted films, absence of vector coating on the films, free or no vector treatment), without displaying cytotoxic nor detrimental effects on the osteochondrogenic or hypertrophic potential of the samples. These findings demonstrate the potential of directly modifying therapeutic bone marrow from patients by controlled delivery of rAAV using biomaterial-guided procedures as a future noninvasive strategy for clinical cartilage repair. Impact statement Injured articular cartilage does not fully regenerate on itself and none of the currently available clinical and experimental therapeutic procedures are capable of restoring an original hyaline cartilage in sites of injury. Biomaterial-guided gene delivery has a strong potential to enhance the processes of cartilage repair. The system presented here based on the FDA-approved biocompatible poly(ɛ-caprolactone) material provides a functional scaffold for the controlled delivery of clinically adapted recombinant adeno-associated virus vectors as an off-the-shelf compound that could be applicable in a minimally invasive manner in patients.


Assuntos
Materiais Biocompatíveis/química , Poliésteres/química , Condrogênese/efeitos dos fármacos , Condrogênese/genética , Dependovirus/genética , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Humanos , Transdução Genética
15.
ACS Omega ; 4(17): 17194-17208, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31656893

RESUMO

The purpose of this study is to present the poly(caprolactone) (PCL) functionalization by the covalent grafting of poly(sodium styrene sulfonate) on electrospun scaffolds using the "grafting from" technique and evaluate the effect of the coating and surface wettability on the biological response. The "grafting from" technique required energy (thermal or UV) to induce the decomposition of the PCL (hydro)peroxides and generate radicals able to initiate the polymerization of NaSS. In addition, UV irradiation was used to initiate the radical polymerization of NaSS directly from the surface (UV direct "grafting from"). The interest of these two techniques is their easiness, the reduction of the number of process steps, and its applicability to the industry. The selected parameters allow controlling the grafting rate (i.e., degree of functionalization). The aim of the study was to compare two covalent grafting in terms of surface functionalization and hydrophilicity and their effect on the in vitro biological responses of fibroblasts. The achieved results showed the influence of the sulfonate functional groups on the cell response. In addition, outcomes highlighted that the UV direct "grafting from" method allows to moderate the amount of sulfonate groups and the surface hydrophilicity presents a considerable interest for covalently immobilizing bioactive polymers onto electrospun scaffolds designed for tissue engineering applications using efficient post-electrospinning chemical modification.

16.
Biointerphases ; 14(4): 041004, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31405286

RESUMO

With the growing number of anterior cruciate ligament (ACL) ruptures and the increased interest for regenerative medicine procedures, many studies are now concentrated on developing bioactive and biodegradable synthetic ligaments. For this application, the choice of raw materials with appropriate physicochemical characteristics and long-term degradation features is essential. Polycaprolactone (PCL) has the advantage of slow degradation that depends on its molecular weight. This study evaluates two PCL materials: a technical grade (PC60: 60 kDa) versus a medical grade (PC12: 80 kDa), both before and after functionalization with poly(sodium styrene sulfonate) (pNaSS). After determining the grafting process had little to no effect on the PCL physicochemical properties, sheep ACL fibroblast responses were investigated. The PC12 films induced a significantly lower expression of the tumor necrosis factor alpha inflammatory gene compared to the PC60 films. Both film types induced an overproduction of fibroblast growth factor-2 and transforming growth factor beta compared to the controls on day 5 and demonstrated collagen gene expression profiles similar to the controls on day 7. Upon protein adsorption, pNaSS grafting caused a rapid cell adhesion in the first 30 min and an increased adhesion strength (1.5-fold higher). Moreover, after 7 days, an increase in cell density and actin network development were noted on the grafted films.


Assuntos
Ligamento Cruzado Anterior/citologia , Materiais Biocompatíveis/toxicidade , Adesão Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Poliésteres/toxicidade , Poliestirenos/toxicidade , Animais , Materiais Biocompatíveis/química , Linhagem Celular , Fenômenos Químicos , Citocinas/metabolismo , Poliésteres/química , Poliestirenos/química , Ovinos
17.
PLoS One ; 13(10): e0205722, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30308052

RESUMO

The anterior cruciate ligament rupture is one of the most common sport injuries. Due to ligaments' poor healing capacity, surgical intervention is often required. Nowadays, these injuries are managed using replacement autografts or to a lesser extent using artificial ligaments. With the expansion of tissue engineering, more recent researches focus on the development of biodegradable structures that could allow graft functioning while enhancing host integration. The main challenge is to develop a structure that gradually loses its mechanical properties when at the same time the neo-ligament gains in solidity. Mechanical behavior and reconstruction of natural tissue are the two key points for such a successful device. This article evaluates the mechanical consistency of poly(ε-caprolactone) fibers bundles grafted with sodium polystyrene sulfonate, as a candidate for ligament prosthesis. In order to be medically used, PCL fibers need to cope with multiple steps before implantation including extensive washings, knitting, grafting and sterilization processes. The evolution of mechanical properties at each step of the elaboration process has been investigated. The results show that PCL bundles have the same visco-elastic behavior than the native ACL. Nevertheless, when undergoing physical treatments such as ionizing radiations, like UV or ß-rays, the material endures a hardening, increasing its stiffness but also its fragility. At this opposite, the thermal radical grafting acts like an annealing step, increasing significantly the elasticity of the PCL fibers. With this chemical treatment, the stiffness is decreasing, leading to higher energy dissipation. Added to the observation of the structure of the material, this demonstrates the possibility of the PCL to modulate it microstructure. In case of orthopedic prosthesis, the need of such a construct is strongly required to avoid distension of the future prosthesis and to restore good knee stabilization, showing the promising future of PCL ligament prosthesis.


Assuntos
Lesões do Ligamento Cruzado Anterior/cirurgia , Poliésteres/uso terapêutico , Animais , Ligamento Cruzado Anterior/efeitos dos fármacos , Ligamento Cruzado Anterior/fisiologia , Ligamento Cruzado Anterior/cirurgia , Fenômenos Biomecânicos , Células Cultivadas , Feminino , Técnicas In Vitro , Poliésteres/química , Ovinos , Estresse Mecânico , Suporte de Carga
18.
Discov Med ; 25(138): 195-203, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29723490

RESUMO

Injuries occurring in orthopedic tissues do not completely heal if left untreated due to their imperfect self abilities for spontaneous repair. As most of the current clinical treatments often fail to fully restore the damaged tissues, there is a critical need to develop potent alternatives to activate the processes of repair in sites of orthopedic lesions. In this regard, combining gene therapy approaches with tissue engineering procedures to generate therapeutic gene vector-guided delivery systems, especially those based on mechanically stable solid scaffolds, is an attractive strategy to provide off-the-shelf compounds for the convenient spatiotemporal expression of candidate agents in orthopedic tissue defects. The goal of this review is to report the most advanced technologies using such scaffolds as tools for the controlled delivery of gene transfer vectors to improve orthopedic tissue repair.


Assuntos
Expressão Gênica , Técnicas de Transferência de Genes , Vetores Genéticos/uso terapêutico , Ferimentos e Lesões/terapia , Animais , Vetores Genéticos/genética , Humanos , Ortopedia , Ferimentos e Lesões/genética
19.
ACS Appl Mater Interfaces ; 10(2): 1480-1491, 2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29266919

RESUMO

The aim of this Research Article is to present three different techniques of poly(sodium styrene sulfonate) (polyNaSS) covalent grafting onto titanium (Ti) surfaces and study the influence of their architecture on biological response. Two of them are "grafting from" techniques requiring an activation step either by thermal or UV irradiation. The third method is a "grafting to" technique involving an anchorage molecule onto which polyNaSS synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization is clicked. The advantage of the "grafting to" technique when compared to the "grafting from" technique is the ability to control the architecture and length of the grafted polymers on the Ti surface and their influence on the biological responses. This investigation compares the effect of the three different grafting processes on the in vitro biological responses of bacteria and osteoblasts. Overall outcomes of this investigation confirmed the significance of the sulfonate functional groups on the biological responses, regardless of the grafting method. In addition, results showed that the architecture and distribution of grafted polyNaSS on Ti surfaces alter the intensity of the bacteria response mediated by fibronectin.


Assuntos
Polímeros/química , Antibacterianos , Osteoblastos , Propriedades de Superfície , Titânio
20.
Biointerphases ; 12(2): 02C418, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28614950

RESUMO

This contribution reports on grafting of bioactive polymers such as poly(sodium styrene sulfonate) (polyNaSS) onto titanium (Ti) surfaces. This grafting process uses a modified dopamine as an anchor molecule to link polyNaSS to the Ti surface. The grafting process combines reversible addition-fragmentation chain transfer polymerization, postpolymerization modification, and thiol-ene chemistry. The first step in the process is to synthetize architecture controlled polyNaSS with a thiol end group. The second step is the adhesion of the dopamine acrylamide (DA) anchor onto the Ti surfaces. The last step is grafting polyNaSS to the DA-modified Ti surfaces. The modified dopamine anchor group with its bioadhesive properties is essential to link bioactive polymers to the Ti surface. The polymers are characterized by conventional methods (nuclear magnetic resonance, size exclusion chromatography, and attenuated total reflection-Fourier-transformed infrared), and the grafting is characterized by x-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, and quartz crystal microbalance with dissipation monitoring. To illustrate the biocompatibility of the grafted Ti-DA-polyNaSS surfaces, their interactions with proteins (albumin and fibronectin) and cells are investigated. Both albumin and fibronectin are readily adsorbed onto Ti-DA-polyNaSS surfaces. The biocompatibility of modified Ti-DA-polyNaSS and control ungrafted Ti surfaces is tested using human bone cells (Saos-2) in cell culture for cell adhesion, proliferation, differentiation, and mineralization. This study presents a new, simple way to graft bioactive polymers onto Ti surfaces using a catechol intermediary with the aim of demonstrating the biocompatibility of these size controlled polyNaSS grafted surfaces.


Assuntos
Adesivos/química , Materiais Revestidos Biocompatíveis/química , Poliestirenos/química , Propriedades de Superfície , Titânio/química , Adsorção , Albuminas/metabolismo , Adesão Celular , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Fenômenos Químicos , Cromatografia em Gel , Fibronectinas/metabolismo , Humanos , Osteoblastos/fisiologia , Ligação Proteica , Técnicas de Microbalança de Cristal de Quartzo , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...